Use of Monocrystalline Silicon as Tool Material for Highly Accurate Blanking of Thin Metal Foils
نویسندگان
چکیده
The trend towards miniaturisation of metallic mass production components combined with increased component functionality is still unbroken. Manufacturing these components by forming and blanking offers economical and ecological advantages combined with the needed accuracy. The complexity of producing tools with geometries below 50 μm by conventional manufacturing methods becomes disproportional higher. Expensive serial finishing operations are required to achieve an adequate surface roughness combined with accurate geometry details. A novel approach for producing such tools is the use of advanced etching technologies for monocrystalline silicon that are well-established in the microsystems technology. High-precision vertical geometries with a width down to 5 μm are possible. The present study shows a novel concept using this potential for the blanking of thin copper foils with monocrystallline silicon as a tool material. A self-contained machine-tool with compact outer dimensions was designed to avoid tensile stresses in the brittle silicon punch by an accurate, careful alignment of the punch, die and metal foil. A microscopic analysis of the monocrystalline silicon punch shows appropriate properties regarding flank angle, edge geometry and surface quality for the blanking process. Using a monocrystalline silicon punch with a width of 70 μm blanking experiments on as-rolled copper foils with a thickness of 20 μm demonstrate the general applicability of this material for micro production processes.
منابع مشابه
Experimental Investigation of Surface Roughness and Kerf Width During Machining of Blanking Die Material on Wire Electric Discharge Machine
Wire electric discharge machine (WEDM) is spark erosion in unconventional machining technique to cut hard and the conductive material with a wire as an electrode. The blanking die material SKD 11 is a high carbon and high chromium tool steel with high hardness and high wearing resistance property. This tool steel has broad application in press tools and dies making industries. In this research ...
متن کاملComplex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibi...
متن کاملDesign study of the geometry of a punching/ blanking tool
The cost of tooling in sheet metal industries contributes a considerable part to the overall cost of manufacturing a component. It is therefore imperative to keep down this cost by ensuring that the tool works for a long period in production without interruption. One way of achieving this objective is to reduce the stress on the tool during punching/blanking. This paper deals with the study of ...
متن کاملEffect of Heat Treatment Time on the Characteristics of Coating Formed on Nanocrystalline Finemet Foils
In the present research, amorphous Fe73.5Si13.5B9Nb3Cu1 Finemet foils, 21-26µm in thickness and 5mm in width, were prepared by Planar Flow Casting (PFC) process. Wound cores of amorphous Finemet foils were simultaneously annealed and heat treated at 540°C for 60, 120 and 240 minutes in steam and air flow to form oxide insulating coating layer on both surfaces of the foils. The structure of nano...
متن کاملSolution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires
The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal-semiconductor core-shell nanowires. We dem...
متن کامل